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Introduction 
 

Ammonia oxidation (AO) is the first and rare 

limiting first step in nitrification is one of the 

key global nitrogen cycle (French et al., 

2012).Until recently, ammonia oxidizing 

bacteria (AOB) of the beta and gamma  

 

 

 

 

 
proteobacteria    were   considered   as    key 

organisms to oxidize the ammonia (Leininger 

et al., 2006; French et al., 2012). 

Chemolithotrophic ammonia oxidizing 

bacteria obtains all of its energy for growth 
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The present investigation was carried out to understand the effect of ammonia 

concentrations on the rate of ammonia-oxidizing activity of ammonia oxidizing bacteria 

(AOB) isolates. Maximum ammonium removal by all the isolates was found at 3 ppm 

ammonium concentration. However, AOB-12 and Nitrosomonas europaea ATCC 19718 

cultures were found to be efficient at low ammonium concentration (3 ppm and 8 ppm), 

whereas AOB-21and AOB consortia (AOB-12+AOB-21) performed well at high 

ammonium concentrations (25, 50, 100 and 200 ppm). These results were corroborated 

with ammonia monooxyginase (amoA) gene copy numbers estimated by quantitative real 

time PCR (q-PCR). The maximum amoA gene copy numbers were recorded in N. 

europaea ATCC 19718 at ammonia level of 50 ppm followed by AOB-12 at 25 ppm and 

the consortia having maximum copy numbers at 100 ppm. This study indicates the promise 

of using native AOB cultures to remove ammonia from the waste waters prior to release 

into the environment. 
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from the oxidation of ammonia to nitrite 

(Ensign et al., 1993) via the intermediate 

hydroxylamine and fixing carbon from carbon 

dioxide via the Calvin cycle (Arp et al., 2002; 

French et al., 2012). Recently the abundance 

of AOB has been determined by quantifying 

16S rRNA or amoA gene copies using 

quantitative polymerase chain reaction 

(qPCR) (Leininger et al., 2006; Wells et al., 

2009; Subrahmanyam et al., 2014a,b). This q-

PCR method is robust, sensitive, and real time 

quantitative tool, that provides an equally 

informative substitute to FISH (Since the 

minimum cells needed to observe - 10
3
 to 10

4
 

cells/ml), though it may be restricted by the 

potency of DNA extraction and PCR biases 

(Martin-Laurent et al., 2001; Bellucci and 

Curtis, 2011).  

 

Water is the elixir of life and is becoming 

increasingly scarce. Maintaining their quality 

for reuse is the need of the hour. Water 

consumption and discharge of high-strength 

wastewater from in fish-processing industries 

are ecological concern world-wide. Disposal 

of waste water from industries related to fish 

processing presents a major problem because 

of their objectionable odour, high protein and 

residual ammonia content (Sankpal and 

Naikwade, 2012). The importance of 

maintaining quality and complying with 

regulations regarding liquid effluents that are 

becoming more stringent cannot be over 

emphasized. The industry requires proper 

wastewater treatment prior to its release into 

the environment or for its re-use. The 

discharge of untreated effluents by industries 

contaminates the groundwater of the 

surrounding environments (Adebisi and 

Fayemiwo, 2011). Therefore, industrial 

wastewaters are treated partially before their 

discharge into sewers, or subjected to suitable 

treatment processes to make them safe 

(Sulieman et al., 2010). A regular monitoring 

of waste water for essential parameters of 

water quality is essential to understand 

environmental pollution and develop 

measures for mitigation. The industry is in 

dire need of efficient system of wastewater 

treatment, which covers the mechanisms and 

processes used to treat protein and ammonia 

rich waters prior to its release into the 

environment. 

 

Nitrifying organisms play a significant role in 

treating waste water (Limpiyakorn et al., 

2011; Reddy et al., 2014). Limited studies are 

available on the efficacy of the ammonia 

oxidizing bacteria isolated from the effluents. 

In this study, we have investigated the effect 

of different ammonia concentrations on the 

responses of AOB isolates, by studying the 

ammonia-oxidizing activity and also the 

expression of amoA gene copy numbers by 

using qPCR. 

 

Materials and Methods 

 

Cultures 

 

In our previous study, two native AOB strains 

(AOB-12; AOB-21) were isolated from fish 

processing effluents. These strains are 

identified as Nitrosomonas nitrosa and  

N. marina of Betaproteobacteria, respectively 

by 16S rRNA gene sequencing analysis 

(Reddy et al., 2015). Consortia culture was 

prepared by mixing of AOB-12 and AOB-21 

culture in the ratio of 1:1. The ammonia 

removal potentials of these isolates were 

compared with that of standard AOB pure 

culture, N. europaea (ATCC 19718). Fresh 

water media (FWM) was prepared as per 

French et al., (2012) used for the enrichment 

and maintaining the cultures incubated in dark 

at 26±1
o
C and the ammonia levels were 

monitored on alternate days.  

 

Effect of ammonia levels on cultures 

 

To investigate the influence of ammonia on 

the ammonia removal efficiency of AOB 
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cultures were checked by growing the 

cultures in 100 ml of mineral salt medium 

(MSM) with varying NH4
+
 concentration 

ranging from 3 ppm to 200 ppm and 

corresponding amount of HEPES buffer (in 

the ratio of 1:4) pH 7.5 in 250 ml Erlenmeyer 

flasks with cotton stoppers. All the cultures 

were inoculated with 10 % (vol/vol) 

conditioned cells and incubated in dark at 

26±1
o
C. Triplicate samples were taken for 

analysis of ammonia, nitrate, and nitrite 

estimation. Ammonia and nitrate were 

estimated using standard kits (Merck 

Spectroquant, Germany) as per the 

manufacturer’s protocol and expressed as 

ppm. Nitrite was estimated as per the method 

described in Nitrification Network 

(http://nitrificationnetwork.org/Nerecipe.php). 

Initial inoculum was taken as a control to 

check the initial amoA gene copy number.  

 

DNA extraction and polymerase chain 

reaction (PCR) 

 

DNA was extracted from 50 ml of each 

grown cultures by using the CTAB method 

with slight modifications (Ausubel et al., 

1995). DNA was diluted 1 in 10 and PCR 

performed using one primer set (amoA 

332F/amoA822R) targeting amoA gene of 

AOB (Rotthauwe et al., 1997). 

Approximately 10 to 20 ng of genomic DNA 

was used for the reaction in thermal cycler 

(DNA Engine, BioRad, M.J. Research Inc., 

USA).  
 

The PCR was performed in 30 µl volumes 

containing 3.0 µl of 10x PCR buffer (100 mM 

Tris-HCl (pH 8.3) (HiMedia, Mumbai, India), 

20 mM MgCl2, 50 mM KCl, 0.1% BSA, 200 

M of each of the four dNTP, 0.2  mol/ l of 

each primer and 0.8 U of taq polymerase 

(HiMedia, Mumbai, India). The PCR protocol 

comprised of 40 cycles of 60 sec at 94
0
C, 60 

sec at 60
0
C and 60 sec at 72

0
C. The 

programme included an initial delay of 5 min 

at 94
0
C and final extension of 5 min at 72

0
C 

before and after 35 cycles, respectively. The 

PCR products were resolved in 2% agarose 

gels, stained with ethidium bromide (5 ng ml
-

1
) and analyzed using a gel documentation 

system (Gel Doc
TM

 XR
+
, BioRad, USA).  

 

The amoA gene was cloned into expression 

vector (pEXP5-NT), transformed into DH5α 

cells and cultured in LB following the 

standard protocol. Plasmid DNA was isolated 

using the alkaline lysis method (Sambrook, 

1989) and used for the development of 

standard curve for absolute quantification of 

amoA gene copy number. The cloned circular 

plasmid was quantified using a Nano Drop 

ND-1000 spectrophotometer (USA). The 

copy numbers of the plasmids were calculated 

for standards by the following formula 

(Godornes et al., 2007). In order to calculate 

the number of grams/molecule also known as 

copy number requires the size of the plasmid 

that contains the gene of interest. A serial 

dilution of linearized plasmid DNA was used 

to generate a standard curve for q-PCR. From 

the standard curve, the copy number of the 

unknown samples can then be derived.  

 

Quantitative of amoA gene of AOB copy 

number by quantitative PCR 

 

The quantitative PCR (q-PCR) was performed 

with triplicate sets of extracted DNA using a 

Step One Plus
TM

 Real-Time PCR System 

(Applied Biosystems, USA). The 

quantification of amoA genes was performed 

using the primer sets amoA 332F/amoA822R 

(Rotthauwe et al., 1997). The PCR mixture 

with a volume of 15 µl contained 7.5 µl 2X 

FastStart Universal SYBR Green Master Mix 

(Roche, Germany), 0.5 µl of each primer (0.4 

µM), and 1 µl of each sample. The PCR 

conditions for the quantification of amoA 

gene copy numbers were 94
o
C for 3 min, 

followed by 40 cycles of 30 s at 94 
o
C, 30 s at 

55
o
C, 45 s at 72 

o
C, with a data capture for 

http://nitrificationnetwork.org/Nerecipe.php
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each cycle at 80
o
C for 20 s and followed by 

melt curve. Data acquisition was performed 

by Step One software (v. 2.2.2) at the end of 

the each elongation step. 

 

Results and Discussion 

 

Influence of NH4
+
 concentration on 

standard N. europaea 

 

Different ammonium concentrations were 

used to observe the growth and nitrification 

activity of the N. europaea. The N. europaea 

are having ability to reduce the ammonia in 

all the concentrations ranging from 3 to 200 

ppm. The percentage reduction in ammonia as 

well as amount of nitrification products 

(nitrite and nitrate) are shown in figure 1. The 

maximum activity in terms of ammonia 

removal (%) is found in 3 ppm of ammonium 

concentration followed by 8 ppm, 25 ppm, 50 

ppm, 100 ppm and 200 ppm respectively.  

 

Real time quantitative PCR (q-PCR) was 

done for the absolute copy number of amoA 

gene of AOB and is shown in figure 2. The 

initial inoculum added to the samples having 

an average amoA gene copies 1.97 × 10
9
. The 

average maximum amoA gene copy numbers 

is found in 50 ppm (3.80 × 10
9
) followed by 

100 ppm (3.10 × 10
9
), 200 ppm (2.65 × 10

9
), 

respectively. The amoA gene copy numbers is 

comparatively less detected than the initial 

inoculum in 25 ppm (1.92 × 10
9
), 8 ppm 

(2.05× 10
8
) and 3 ppm (3.965× 10

7
) 

respectively.  

 

Influence of NH4
+
 concentration on AOB-

12 

 

Different ammonium concentrations are used 

for the growth and nitrification activity of the 

AOB-12. It was found that AOB-12 had the 

ability to reduce ammonium in all the 

concentrations ranging from 3 to 200 ppm. 

The ammonia removal in ppm, percentage 

and products of nitrification (nitrite and 

nitrate) are shown in figure 3. The maximum 

activity in terms of ammonia removal (%) 

was found in 3 ppm of ammonium 

concentration followed by 8 ppm, 25 ppm, 

100 ppm, 50 ppm and 200 ppm.  

 

Real time q-PCR was done for the absolute 

copy number of amoA gene of AOB and is 

shown in figure 4. The initial inoculum was 

added into the treatment samples having the 

average amoA gene copies are 7.3722 × 10
5
. 

The maximum amoA gene copy numbers 

were found in 25 ppm (4.14 × 10
6
), followed 

by 50 ppm (3.82 × 10
6
), 100 ppm (2.82 × 

10
6
), 200 ppm (2.748 × 10

6
), and 8 ppm 

(1.3284 × 10
6
), respectively. However, the 

amoA gene copy number is comparatively 

less detected than the initial inoculum in case 

of concentration 3 ppm (1.746 × 10
5
).  

 

Influence of NH4
+
 concentration on AOB-

21 culture 

 

AOB-21 is having the ability to reduce the 

ammonium in all the concentrations ranging 

from 3 to 200 ppm. The ammonium removal 

and products of nitrification (nitrite and 

nitrate) are shown in figure 5. The maximum 

activity in terms of ammonium removal (%) is 

found in 8 ppm of ammonium concentration 

followed by 3 ppm, 25 ppm, 50 ppm, 100 

ppm and 200 ppm. The nitrification (nitrite + 

nitrate) rate is observed maximum at 200 

ppm, followed by 100 ppm, 50 ppm, 25 ppm, 

and 8 ppm. 

 

q-PCR was done for the absolute copy 

number of amoA gene of AOB and is shown 

in figure 6. The initial inoculum was added 

into the treatment samples having the amoA 

gene copies with an average of 6.487 × 10
6
. 

The maximum amoA gene copy numbers was 

found in 8 ppm (2.31 × 10
8
), followed by 25 

ppm (1.85× 10
8
), 50 ppm (7.65× 10

7
), 100 

ppm (5.81 × 10
7
), 200 ppm (4.84 × 10

7
) 
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respectively. The AOB-21 is found to be very 

useful in aquaculture ponds, since it can 

withstand all the tested conditions and it can 

remove the ammonium effectively at different 

ammonium concentrations, compared to other 

isolates observed under this study. 

 

Influence of NH4
+
 concentration on 

consortium of AOB-12 and AOB-21  

 

In this experiment, the AOB12 and AOB21 

are mixed and inoculated in to the flasks to 

see the ability of AOB consortia in group. The 

ammonia removal and products of 

nitrification (nitrite and nitrate) are shown in 

figure 7. The maximum activity in terms of 

ammonia removal (%) is found in 8 ppm of 

ammonium concentration followed by 25 

ppm, 50 ppm, 100 ppm and 200 ppm, 

respectively. The nitrification (nitrite + 

nitrate) rate was found to be maximum at 200 

ppm, followed by 100 ppm, 50 ppm, 25 ppm, 

and 8 ppm respectively. 

 

Fig.1 Influence of NH4
+ 

concentrations (3 ppm to 200 ppm) on ammonia removal efficiency of 

N. europaea (mean ± SD; n = 3) 
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Fig.2 Influence of NH4
+ 

concentrations (3 ppm to 200 ppm) on amoA gene copy number of  

N. europaea as determined by qPCR 

 
 

Fig.3 Influence of NH4
+ 

concentrations (3 ppm to 200 ppm) on ammonium removal efficiency of 

AOB-12 (mean ± SD; n = 3) 
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Fig.4 Influence of NH4
+ 

concentrations (3 ppm to 200 ppm) on amoA gene copy number of 

AOB-12 as determined by qPCR 

 
 

Fig.5 Influence of NH4
+ 

concentrations (3 ppm to 200 ppm) on ammonia removal efficiency of 

AOB-21 (mean ± SD; n = 3) 
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Fig.6 Influence of NH4
+
 concentrations from 3 ppm to 200 ppm on the amoA gene  

Copy number of AOB-21 as determined by qPCR 

 
 

Fig.7 Influence of NH4
+ 

concentrations (3 ppm to 200 ppm) on ammonia removal efficiency of 

AOB consortium (AOB-12+AOB-21 isolate) (mean ± SD; n = 3) 
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Fig.8 Influence of NH4
+
 concentrations from 3 ppm to 200 ppm on the amoA gene  

Copy number of AOB consortium (AOB-12+AOB-21) as determined by qPCR 

 
 

Real time q-PCR was done for the absolute 

copy number of amoA gene of AOB and is 

shown in figure 8. The initial inoculum was 

added into the treatment samples having the 

average amoA gene copies was 7.78 × 10
6
 and 

the maximum amoA gene copy numbers was 

found in 100 ppm (6.19 × 10
7
), followed by 

50 ppm (4.08× 10
7
), 200 ppm (1.49× 10

7
), 

and 25 ppm (1.33 × 10
7
) respectively.  

 

The amoA gene copy number is 

comparatively less detected than the initial 

inoculum in 8 ppm (4.399 × 10
6
) and 3 ppm 

(3.733× 10
6
) concentrations. This consortium 

was found to be very useful in treating 

processing effluents. Since its ability to 

withstand all the expected conditions and it 

can remove the ammonia at all stages of 

ammonia concentration effectively. 

 

The central theme of this study was to 

determine the effect of ammonium 

concentrations on nitrification rate of AOB 

isolates as well as N. europaea. Further, to 

study the amoA gene copy number of 

ammonia oxidizing bacteria upon exposure to 

different ammonium concentrations. Since, 

the ammonium concentrations in fish 

processing effluent treatment plants (FPETPs) 

are ranging from 2 to 200 ppm. 

 

Our results are in agreement with the other 

studies, wherein members of the N. 

oligotropha cluster are less tolerant to high 

concentration of NH4
+
,while members of the 

N. europaea and N. eutropha clusters are 

primarily found in environments with high 

NH4
+
concentrations (Koops and 

Pommerening-Roeser, 2001; Bollmann et al., 

2002; Koops et al., 2007; French et al., 2012). 

All the isolates in this study did not grow well 

at low ammonium concentration.  

 

Low ammonium concentration in the media 

might have inhibited their growths and 

consequently the performances, Similar to 

results were also reported by earlier workers 

(Stehr et al., 1995; Suwa et al., 1997; 

Magalhaes et al., 2005). Since the members 

of AOB communities are significantly 

different from one another (Bernhard et al., 

2005), it is also possible that some AOBs 

were more sensitive to low ammonium 

concentration as observed by Hopkinson et 

al.,(1999). Nevertheless ammonium 

concentrations used in this study were similar 
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to in situ ammonium concentrations in fish 

processing effluent treatment plants 

(FPETPs).  

 

In this study, all the isolates show more amoA 

gene copy numbers in 50 ppm or 100 ppm 

compared to those at lower ammonium 

concentration. This may be because of the 

favorable ammonium concentrations available 

in the media to perform the ammonia 

oxidising activity. From the experiments of 

French et al., (2012), it is observed that 

increasing ammonium concentration up to 18 

ppm doubled the growth rate of the AOB 

cultures. However, the AMO activity was lost 

due to presence of high concentrations of 

nitrite in the medium resulting from ammonia 

oxidation activity (Stein and Arp, 1998). It 

was also clearly found that the more AMO 

activity was lost under alkaline conditions 

than acidic conditions.  

 

It has been reported from the experiments 

with N. europaea, during the nitrification and 

denitrification process, around 7% of the total 

ammonium was transformed in to dinitrogen 

(Shrestha et al., 2002).  

 

Stein and Arp (1998) found that the 

incubations with or without ammonium, 

resulted in the loss of ammonia oxidation 

activity after 24 h. As the ammonium 

concentration increases to 270 ppm and 900 

ppm, the loss of ammonia oxidation activity 

was around 85% and 35% respectively. 

However, when grown without ammonium, 

there was no change observed in the ammonia 

oxidizing activity.  

 

The native cultures obtained from fish 

processing effluents shows that these cultures 

are efficient in removal of ammonia at various 

ammonia concentrations and offer a 

promising biotechnological tool for treating 

the waste water from the effluents prior to 

release into the environment. 
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